top of page

Articles

Submitted\Proceeding Articles

  • R. Manohar and S. M. Mallikarjuaniah, Newton linearization and finite elements method for quasi-static strain limiting model: Existence-uniqueness and convergence analysis. (under preparation)

  • R. Manohar and S. M. Mallikarjuaniah, Convergence analysis of adaptive finite element methods for phase-field modeling of dynamic fracture propagation in elastic media under wave interactions. (under preparation)

  • R. Manohar and S. M. Mallikarjuaniah, Adaptive discontinuous Galerkin Method for quasi-static strain-limiting elasticity with mixed moundary conditions. (under preparation)

  • R. Manohar and S. M. Mallikarjuaniah, Convergence analysis of adaptive finite element algorithms for regularized variational model of  quasi-static brittle fracture in ``strain-limiting" elastic solids.  arXiv preprint arXiv:2505.19801 (Communicated)

Refereed Articles

  • R. Manohar, Error analysis for finite element approximation of parabolic Neumann boundary control problems, Computers and Mathematics with Applications, published on January 5, 2024.

  • R. Manohar and R. K. Sinha, A posteriori error estimates for parabolic optimal control problems with controls acting on a lower dimensional manifold,  Journal of Scientific Computing,  published on October 6,  2021.

  • R. Manohar and R. K. Sinha, A posteriori  L∞(L∞)-error estimates for finite element approximations to parabolic optimal control problems, Computational and Applied Mathematics, published on November 9, 2021. 

  • R. Manohar and R. K. Sinha,  Elliptic reconstruction and a posteriori error estimates for fully-discrete semilinear parabolic optimal control problems,  Journal of Computational Mathematics, published on June 18,  2021. 

  • R. Manohar and R. K. Sinha,  Local a posteriori error analysis of finite element method for parabolic boundary control problems,  Journal of Scientific Computing,  published on March 1, 2022.

  • . R. Manohar and R. K. Sinha,  Local a posteriori error analysis of finite element method for boundary control problems governed by nonlinear parabolic equations, Journal of Computational and Applied Mathematics, published on August 1, 2022.

  • R. Manohar and R. K. Sinha, Space-time a posteriori error analysis of finite element approximation for parabolic optimal control problems: A reconstruction approach, Optimal Control Application and Methods, published on June 29, 2020.

bottom of page